1

OPERATIONAL SYSTEMS - LABORATORY 2018/2019
RULES FOR EVALUATION OF PROGRAMMING TASKS:
Laboratory consist of development of simulations concerning algorithms / mechanisms used in operating systems. Therefore, the basis for passing such a task is not only the development of an simulation but also the knowledge of relevant issues, verified in the form of an oral answer.
The final grade consists of the assessment for the preparation of the chosen algorithm (10%) and the evaluation of individual tasks (90%). Both elements must be scored at a minimum of 50% of points!
Deadlines for completing individual tasks:
	Task
	Deadline for presentation
	Deadline for simulation 
	Score

	
	
	[bookmark: _GoBack]
	
	
	
	
	
	
	

	Zadanie 1
	Zajęcia 2
	
	
	
	Zajęcia 4
	
	
	
	10

	Zadanie 2
	Zajęcia 5
	
	
	
	Zajęcia 7
	
	
	
	10

	Zadanie 3
	Zajęcia 8
	
	
	
	Zajęcia 10
	
	
	
	10

	Zadanie 4
	Zajęcia 11
	
	
	
	Zajęcia 12
	
	
	
	10

	Zadanie 5
	Zajęcia 13
	
	
	
	Zajęcia 14
	
	
	
	10

	Grade
	Zajęcia 15
	
	
	
	X













ALGORYTHM PRESENTATION:
1. Students are divided into 5 groups.
2. Each group selects an algorithm to present.
3. The classes indicated in the above table begin with the presentation of the algorithm (presentation of substantive knowledge needed to understand the task, presentation of the developed algorithm).
PROGRAMMING TASK:
1. The task can be performed in the programming language chosen by the student (Java or C #).
2. The classes indicated in the above table are for the presentation of a working simulation and the program code, presentation of the program's operation and its assumptions, as well as discussion of the results returned by the program.
For a task delayed by one class, you can get max. 50% points. Tasks that are late more than that will not be assessed! The only exceptions should be properly documented (in a written case - sick leave).

 













Task 1
Simulation of the operation of processor access planning algorithms for reporting processes.
Investigate the average process wait time for different planning algorithms:
- FCFS
- SJF (with expropriation and without)
- rotational (with the option of choosing a quantum of time)
The assumptions of the simulation should be formulated (the possibility of controlling the simulation parameters is welcome).
Tips:
- algorithms are best checked for the same test data (i.e. the same test strings of the reporting processes)
- there should be more test strings (20 ± 50?); the result should be the average value
- in each sequence there will be N processes with random lengths of the processor phase (phase length distribution should be chosen so that it corresponds to the situation in the real system where it is not even), reporting at random moments (select parameters to obtain queues of processes waiting for processor allocation)
- possible representation of the process: record (number, length of the processor phase, moment of reporting, waiting time / initially equal to 0 / ...)
Obtained results should be explained and ready to draw conclusions from them.


























Exercise 2
Simulation of disk access planning algorithms.
- In our case, 'Disk' is a linearly ordered sequence of blocks with numbers from 1 to MAX.
- The algorithm evaluation criterion will be the sum of shifts (moves) of the disk head, as is known to be proportional to the time of order execution.
1. Check the FCFS, SSTF, SCAN and C-SCAN algorithms.
2. Next, assume that there are also real-time applications in the system that must be handled with EDF and / or FD-SCAN. How does this affect the results?
Tips:
The assumptions of the simulation should be formulated:
- 'disk' size (number of blocks)
- number and method of generating notifications (full queue from the beginning - notification in progress - schedule distribution - steady, different?)
- the way of handling real-time requests
- others
One should be able to justify the solution adopted.  





























Exercise 3
Examination of page replacement algorithms.
Program operation:
- generate a random string of n page references
- for the generated string, enter the number of page errors for different page replacement algorithms:
1. FIFO (delete the longest-staying page in physical memory)
2. OPT (optimal - delete a page that will not be used for the longest time)
3. LRU (delete the page that has not been referenced for the longest)
4. approximated LRU (known)
5. RAND (delete randomly selected page)
- carry out simulations (on the same test sequence) for different number of frames (e.g. several (3, 5, 10?) or values given by the user)
Tips:
The assumptions of the simulation should be formulated:
- virtual memory size (number of pages).
- physical memory size (number of frames).
- length (should be significant - at least 1000) and how to generate a string of page references (necessarily include the principle of local references). 


























Task 4
Progressing complication of task 3. Assume that:
- there is a certain number of processes (around ~ 10) in the system.
- every one of them uses their own set of pages (the locality principle still applies).
- the global reference sequence is the result of a combination of sequences of references generated by individual processes (each generates many references, not one)
- each process gets assigned a specific number of frames based on the following methods:
1. Proportional allocation
2. Equal allocation
3. Controlling the frequency of page errors
4. Zone model
- page replacement takes place in accordance with LRU.
How do the frame allocation strategies influence the results (number of page errors - globally, for each process)?
Tips:
The assumptions of the simulation should be formulated.
The program should print on the screen the assumed assumptions of the simulation.
The possibility of changing the assumptions by the user is welcome.  



























Task 5
Simulation of a distributed algorithm balancing processor load.
The system uses N identical processors. New tasks (processes) appear on each of them, with DIFFERENT frequency and DIFFERENT requirements (each process requires a specific, different, share in the computing power of the processor - eg ~ 3%).
Program operation:
A task appears on processor x.
Simulate the following assignment strategies:
1. x asks a random processor for the current load. If it is smaller than the threshold p, the process is sent there. If not, we draw and ask the next one, trying at most z times. If all of the drawn are loaded above p, the process is done on x.
2. If the load x exceeds the threshold value p, the process is sent to a randomly selected processor with a load less than p (if the drawn y has a load > p, the draw repeats itself). If it does not exceed - the process is performed on x.
3. As in item 2, however, processors with a load less than the minimum threshold r ask randomly selected processors and if the load of the respondent is greater than p, the questioner takes over part of his tasks (assume how big).
Carry out the simulation of strategy 1-3 for N = approx. 50-100 and a long series of tasks to be carried out (the parameters should be selected by yourself so that the whole works). In each case, give as a result:
A. Average CPU load (decide sensibly, how it will be calculated).
B. The average deviation from the value from point A.
C. Number of requests for workload and migration (displacement) of processes.
Tips:
The opportunity to change the value of p, r, z, N is welcome.
dr inż. Katarzyna Tworek		Office hours: B1/309b
katarzyna.tworek@pwr.edu.pl | www.ii.pwr.edu.pl/~tworek
